2,668 research outputs found

    Quantum Gravity - Testing Time for Theories

    Get PDF
    The extreme smallness of both the Planck length, on the one side, and the ratio of the gravitational to the electrical forces between, say, two electrons, on the other side has led to a widespread belief that the realm of quantum gravity is beyond terrestrial experiments. A series of classical and quantum arguments are put forward to dispel this view. It is concluded that whereas the smallness of the Planck length and the ratio of gravitational to electrical forces, does play its own essential role in nature, it does not make quantum gravity a science where humans cannot venture to probe her secrets. In particular attention is drawn to the latest neutron and atomic interferometry experiments, and to gravity wave interferometers. The latter, as Giovanni Amelino-Camelia argues [Nature 398, 216 (1999)], can be treated as probes of space-time fuzziness down to Planck length for certain quantum-gravity models

    Evidence on Problematic Online Gaming and Social Anxiety over the Past Ten Years: a Systematic Literature Review

    Get PDF
    Purpose of Review: The present study aimed to review the literature concerning the relationship between problematic online gaming (POG) and social anxiety, taking into account the variables implicated in this relationship. This review included studies published between 2010 and 2020 that were indexed in major databases with the following keywords: Internet gaming, disorder, addiction, problematic, social phobia, and social anxiety. Recent Findings: In recent years, scientific interest in POG has grown dramatically. Within this prolific research field, difficulties associated with social anxiety have been increasingly explored in relation to POG. Indeed, evidence showed that individuals who experience social anxiety are more exposed to the risk of developing an excessive or addictive gaming behavior. Summary: A total of 30 studies satisfied the initial inclusion criteria and were included in the present literature review. Several reviewed studies found a strong association between social anxiety and online gaming disorder. Furthermore, the relationships among social anxiety, POG, age, and psychosocial and comorbid factors were largely explored. Overall, the present review showed that socially anxious individuals might perceive online video games as safer social environments than face-to-face interactions, predisposing individuals to the POG. However, in a mutually reinforcing relationship, individuals with higher POG seem to show higher social anxiety. Therefore, despite online gaming might represent an activity able to alleviate psychopathological symptoms and/or negative emotional states, people might use online gaming to counterbalance distress or negative situations in everyday life, carrying out a maladaptive coping strategy

    new beam scanning device for active beam delivery system bds in proton therapy

    Get PDF
    Abstract A new Beam Delivery System (BDS) has been studied in the framework of a new proton therapy project, called AMIDERHA. It is characterized by an active scanning system for target irradiation with a pencil beam. The project is based on the use of a Linac with variable final energy and the Robotized Patient Positioning System instead of the traditional gantry. As a consequence, in the active BDS of AMIDERHA a pencil beam scanning system with a relatively long Source to Axis Distance (SAD) can be used. In this contribution, the idea of using a unique new device capable of both horizontal and vertical beam scansion for the AMIDERHA active BDS will be presented and discussed. Furthermore, a preliminary design of that device will be shown, together with the results of simulations

    Band structure approach to the resonant x-ray scattering

    Full text link
    We study the resonance behaviour of the forbidden 600 and 222 x-ray Bragg peaks in Ge using LDA band structure methods. These Bragg peaks remain forbidden in the resonant dipole scattering approximation even taking into account the non local nature of the band states. However they become allowed at resonance if the eigenstates of the unoccupied conduction band involve a hybridization of p like and d like atomic states. We show that the energy dependence of the resonant behaviour, including the phase of the scattering, is a direct measure of this p-d hybridization.and obtain quantitative agreement with experiment. A simple physical picture involving a product of dipole and quadrupolar transition matrix elements explains this behaviour and shows that it should be generally true for cases where the resonating atom is not at an inversion center. This has strong implications for the description of the resonance behavior of x-ray scattering in materials where the resonant atom is not at an inversion center such as V2O3 and in ferro and antiferro electric and piezo electric materials in general.Comment: 4 pages, 5figure

    The Possibility of Emersion of the Outer Layers in a Massive Star Simultaneously with Iron-Core Collapse: A Hydrodynamic Model

    Full text link
    We analyze the behavior of the outer envelope in a massive star during and after the collapse of its iron core into a protoneutron star (PNS) in terms of the equations of one-dimensional spherically symmetric ideal hydrodynamics. The profiles obtained in the studies of the evolution of massive stars up to the final stages of their existence, immediately before a supernova explosion (Boyes et al. 1999), are used as the initial data for the distribution of thermodynamic quantities in the envelope.We use a complex equation of state for matter with allowances made for arbitrary electron degeneracy and relativity, the appearance of electron-positron pairs, the presence of radiation, and the possibility of iron nuclei dissociating into free nucleons and helium nuclei. We performed calculations with the help of a numerical scheme based on Godunov's method. These calculations allowed us to ascertain whether the emersion of the outer envelope in a massive star is possible through the following two mechanisms: first, the decrease in the gravitational mass of the central PNS through neutrino-signal emission and, second, the effect of hot nucleon bubbles, which are most likely formed in the PNS corona, on the envelope emersion. We show that the second mechanism is highly efficient in the range of acceptable masses of the nucleon bubbles (≤0.01M⊙\leq 0.01M_\odot) simulated in our hydrodynamic calculations in a rough, spherically symmetric approximation.Comment: 14 pages, 11 figure

    Comment on "Gravitationally Induced Neutrino-Oscillation Phases"

    Get PDF
    We critically examine the recent claim (gr-qc/9603008) of a ``new effect'' of gravitationally induced quantum mechanical phases in neutrino oscillations. A straightforward exercise in the Schwarzschild coordinates appropriate to a spherically symmetric non-rotating star shows that, although there is a general relativistic effect of the star's gravity on neutrino oscillations, it is not of the form claimed, and is too small to be measured.Comment: Plain LaTeX, 7 pages, no figure

    Piecewise Parabolic Method on a Local Stencil for Magnetized Supersonic Turbulence Simulation

    Full text link
    Stable, accurate, divergence-free simulation of magnetized supersonic turbulence is a severe test of numerical MHD schemes and has been surprisingly difficult to achieve due to the range of flow conditions present. Here we present a new, higher order-accurate, low dissipation numerical method which requires no additional dissipation or local "fixes" for stable execution. We describe PPML, a local stencil variant of the popular PPM algorithm for solving the equations of compressible ideal magnetohydrodynamics. The principal difference between PPML and PPM is that cell interface states are evolved rather that reconstructed at every timestep, resulting in a compact stencil. Interface states are evolved using Riemann invariants containing all transverse derivative information. The conservation laws are updated in an unsplit fashion, making the scheme fully multidimensional. Divergence-free evolution of the magnetic field is maintained using the higher order-accurate constrained transport technique of Gardiner and Stone. The accuracy and stability of the scheme is documented against a bank of standard test problems drawn from the literature. The method is applied to numerical simulation of supersonic MHD turbulence, which is important for many problems in astrophysics, including star formation in dark molecular clouds. PPML accurately reproduces in three-dimensions a transition to turbulence in highly compressible isothermal gas in a molecular cloud model. The low dissipation and wide spectral bandwidth of this method make it an ideal candidate for direct turbulence simulations.Comment: 28 pages, 18 figure

    Modeling the effectiveness of One Health interventions against the zoonotic hookworm Ancylostoma ceylanicum

    Get PDF
    Hookworm disease is a major global public health concern, annually affecting 500-700 million of the world's poorest people. The World Health Organization is targeting the elimination of hookworm as a public health problem by 2030 using a strategy of mass drug administration (MDA) to at-risk human populations. However, in Southeast Asia and the Pacific the zoonotic hookworm species, Ancylostoma ceylanicum, is endemic in dogs and commonly infects people. This presents a potential impediment to the effectiveness of MDA that targets only humans. Here, we develop a novel multi-host (dog and human) transmission model of A. ceylanicum and compare the effectiveness of human-only and "One Health" (human plus dog) MDA strategies under a range of eco-epidemiological assumptions. We show that One Health interventions-targeting both dogs and humans-could suppress prevalence in humans to ≤ 1% by the end of 2030, even with only modest coverage (25-50%) of the animal reservoir. With increasing coverage, One Health interventions may even interrupt transmission. We discuss key unresolved questions on the eco-epidemiology of A. ceylanicum, the challenges of delivering MDA to animal reservoirs, and the growing importance of One Health interventions to human public health

    Exact Foldy-Wouthuysen transformation for spin 0 particle in curved space

    Full text link
    Up to now, the only known exact Foldy- Wouthuysen transformation (FWT) in curved space is that concerning Dirac particles coupled to static spacetime metrics. Here we construct the exact FWT related to a real spin-0 particle for the aforementioned spacetimes. This exact transformation exists independently of the value of the coupling between the scalar field and gravity. Moreover, the gravitational Darwin term written for the conformal coupling is one third of the relevant term in the fermionic case.Comment: 10 pages, revtex, improved version to appear in Phys. Rev.
    • …
    corecore